Functional characterization of Ape1 variants identified in the human population.
نویسندگان
چکیده
Apurinic/apyrimidinic (AP) sites are common mutagenic and cytotoxic DNA lesions. Ape1 is the major human repair enzyme for abasic sites and incises the phosphodiester backbone 5' to the lesion to initiate a cascade of events aimed at removing the AP moiety and maintaining genetic integrity. Through resequencing of genomic DNA from 128 unrelated individuals, and searching published reports and sequence databases, seven amino acid substitution variants were identified in the repair domain of human Ape1. Functional characterization revealed that three of the variants, L104R, E126D and R237A, exhibited approximately 40-60% reductions in specific incision activity. A fourth variant, D283G, is similar to the previously characterized mutant D283A found to exhibit approximately 10% repair capacity. The most common substitution (D148E; observed at an allele frequency of 0.38) had no impact on endonuclease and DNA binding activities, nor did a G306A substitution. A G241R variant showed slightly enhanced endonuclease activity relative to wild-type. In total, four of seven substitutions in the repair domain of Ape1 imparted reduced function. These reduced function variants may represent low penetrance human polymorphisms that associate with increased disease susceptibility.
منابع مشابه
Altered Endoribonuclease Activity of Apurinic/Apyrimidinic Endonuclease 1 Variants Identified in the Human Population
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in the DNA base excision repair pathway and cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. APE1 also has 3'-5' DNA exonuclease and 3' DNA phosphodiesterase activities, and regulates transcription factor DNA binding through its redox regulatory function. The human APE1 has recently been shown to en...
متن کاملAPE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation
Apurinic/apyrimidinic endonuclease 1 (APE1) is the main mammalian AP-endonuclease responsible for the repair of endogenous DNA damage through the base excision repair (BER) pathway. Molecular epidemiological studies have identified several genetic variants associated with human diseases, but a well-defined functional connection between mutations in APE1 and disease development is lacking. In or...
متن کاملFunctional Assessment of Population and Tumor-Associated APE1 Protein Variants
Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant AP site repair enzyme in mammals. APE1 also maintains 3'-5' exonuclease and 3'-repair activities, and regulates transcription factor DNA binding through its REF-1 function. Since complete or severe APE1 deficiency leads to embryonic lethality and cell death, it has been hypothesized that APE1 protein variants with slightly impaired ...
متن کاملP-125: Identification of Novel Missense Mutations of The TGFBR3 Gene in Chinese Women with Premature Ovarian Failure
Background The aim of this study was to assess the ssociation between human transforming growth factor b receptor,type III (TGFBR3) and idiopathic premature ovarian failure (POF) in a Chinese population. MaterialsAndMethods A total of 112 Chinese women with idiopathic POF and 110 normal controls were examined. DNA samples prepared from blood leukocytes were used as templates for polymerase-chai...
متن کاملComprehensive Computational Analysis of Protein Phenotype Changes Due to Plausible Deleterious Variants of Human SPTLC1 Gene
Genetic variations found in the coding and non-coding regions of a gene are known to influence the structure as well as the function of proteins. Serine palmitoyltransferase long chain subunit 1 a member of α-oxoamine synthase family is encoded by SPTLC1 gene which is a subunit of enzyme serine palmitoyltransferase (SPT). Mutations in SPTLC1 have been associated with hereditary sensory and auto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 28 20 شماره
صفحات -
تاریخ انتشار 2000